Stimulation of UT-A1-mediated transepithelial urea flux in MDCK cells by lithium.
نویسندگان
چکیده
Trans-epithelial tracer urea flux across Madin-Darby canine kidney (MDCK) cells permanently expressing the urea transporter UT-A1 is stimulated by agents that activate the cAMP signaling pathway, such as vasopressin or forskolin, thus mimicking the activation of urea permeability in the inner medullary collecting duct in the presence of vasopressin. Here, we report that UT-A1-mediated urea flux is also activated two-to-threefold over background by exposing the cells to media containing LiCl. This is in contrast to reports on cortical and medullary collecting duct tubules where acute and chronic exposure to lithium (Li) suppresses the osmotic water permeability, which is also regulated by cAMP levels. The Li concentration dependence of urea flux activation was linear up to 150 mM Li. Li activated only from the basolateral side where its effect was inhibited by amiloride, presumably because Li entered the cells through a basolateral Na-H exchanger. Li and IBMX, which also weakly activated urea flux, greatly augmented each others' stimulatory effect on urea flux. However, cellular cAMP levels did not rise commensurately with urea fluxes, and even though Li augments the activation by forskolin, it greatly inhibits the forskolin-induced formation of cAMP. These results suggest that the effect of Li in this MDCK model of renal cells does not involve cAMP or at least utilizes an additional signaling pathway independent of cAMP.
منابع مشابه
Regulation of UT-A1-mediated transepithelial urea flux in MDCK cells.
Transepithelial [(14)C]urea fluxes were measured across cultured Madin-Darby canine kidney (MDCK) cells permanently transfected to express the urea transport protein UT-A1. The urea fluxes were typically increased from a basal rate of 2 to 10 and 25 nmol.cm(-2).min(-1) in the presence of vasopressin and forskolin, respectively. Flux activation consisted of a rapid-onset component of small ampli...
متن کاملUbiquitination regulates the plasma membrane expression of renal UT-A urea transporters.
The renal UT-A urea transporters UT-A1, UT-A2, and UT-A3 are known to play an important role in the urinary concentrating mechanism. The control of the cellular localization of UT-A transporters is therefore vital to overall renal function. In the present study, we have investigated the effect of ubiquitination on UT-A plasma membrane expression in Madin-Darby canine kidney (MDCK) cell lines ex...
متن کاملUrea transport in MDCK cells that are stably transfected with UT-A1.
Progress in understanding the cell biology of urea transporter proteins has been hampered by the lack of an appropriate cell culture system. The goal of this study was to create a polarized epithelial cell line that stably expresses the largest of the rat renal urea transporter UT-A isoforms, UT-A1. The gene for UT-A1 was cloned into pcDNA5/FRT and transfected into Madin-Darby canine kidney (MD...
متن کاملUrea flux across MDCK-mUT-A2 monolayers is acutely sensitive to AVP, cAMP, and [Ca2+]i.
In this study, we engineered a Madin-Darby canine kidney (MDCK) type I cell line to stably express the mouse urea transporter UT-A2. Monolayers of MDCK-mUT-A2 cells had a basal phloretin-inhibitable urea permeability of 8.4x10(-6)+/-0.3 cm/s. Treatment of MDCK-mUT-A2 monolayers with AVP led to a rapid dose-dependent increase in trans-monolayer phloretin-inhibitable urea flux. The temporal patte...
متن کاملForskolin stimulation promotes urea transporter UT-A1 ubiquitination, endocytosis, and degradation in MDCK cells.
The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 294 3 شماره
صفحات -
تاریخ انتشار 2008